Acta Crystallographica Section E

Structure Reports
Online
ISSN 1600-5368

Mei Ching Tseng, Shao Pin
 Wang, Yu Cheng Yu, Shi Yuan Sheu and Wen Liang Huang*

Department of Chemistry, National Cheng-Kung University, Tainan 70101, Taiwan

Correspondence e-mail:
wlhuang@mail.ncku.edu.tw

Key indicators

Single-crystal X-ray study
$T=200 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.030$
$w R$ factor $=0.090$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-(2-Benzoylpyridine- $\kappa^{2} N, O$)dichloro-[2-(pyridine-2-carbonyl)phenyl- $\left.\kappa^{2} C^{1}, N\right]$ rhodium(III)

The title organometallic complex, trans- $\left[\mathrm{Rh}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NO}\right)\right.$ $\mathrm{Cl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)$], which was obtained from the reaction of rhodium(III) chloride and 2-benzoylpyridine, features an $\mathrm{Rh}^{\text {III }}$ atom coordinated by two N , one O , one C and two Cl atoms in a distorted octahedral environment.

Comment

Several studies of the cyclometallation of ortho-metallated ligands such as anionic ppy (ppyH is 2-phenylpyridine) have been reported. For example, by simply mixing rhodium(III) chloride trihydrate with 2-pyridyl phenone (Hbzpy) in 2-methoxyethanol for 4 d at room temperature, de Geest \& Steel (1995) synthesized $\mathrm{Rh}(\mathrm{Hbzpy})($ bzpy $) \mathrm{Cl}_{2}$ (bzpy is 2 -pyridyl-2-phenonide). They reported that the complex had a five-membered N, O metallacycle involving the chelated Hbzpy ligand and a six-membered N, C metallacycle involving the chelated bzpy ligand, on the basis of NMR chemical-shift analysis. The authors claimed that they had isolated the cisisomer out of the six possible diasterioisomers. We have prepared the title orthometallated $\mathrm{Rh}^{\mathrm{III}}$ complex, (I), containing 2-pyridyl phenone, in order to ascertain the stereochemistry.

(I)

Complex (I) exhibits a pseudo-octahedral geometry at the $\mathrm{Rh}^{\mathrm{III}}$ centre, with two Cl ligands in a trans orientation. The pyridyl N atom of the Hbzpy ligand is trans to the N atom of the bzpy ligand. Cyclometallation leads to a boat conformation, with atoms Rh and C 19 above the $\mathrm{N} 2-\mathrm{C} 20-\mathrm{C} 18-\mathrm{C} 13$ plane (Fig. 1). The pyridyl ring of the Hbzpy ligand and the phenyl ring of the bzpy ligand are mutually stacked [$\mathrm{C} 1-$ $\left.\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14=53.9(2)^{\circ}\right]$ (Table 1). The upfield shift of $\mathrm{H}(\mathrm{C} 1) / \mathrm{H}(\mathrm{C} 14)$ and the nuclear Overhauser effect of these H atoms were also observed in the NMR spectrum. On this basis, we suggest that the NMR results alone are not sufficient to determine a trans/cis conformation. The five-membered chelate ring deviates slightly from planarity [$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-$ $\left.\mathrm{O} 1=17.4(3)^{\circ}\right]$ and is inclined to the phenyl plane [C5-C6$\left.\mathrm{C} 7-\mathrm{C} 8=46.2(4)^{\circ}\right]$. There are no short intermolecular contacts.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids.

Experimental

The title complex was synthesized by heating a mixture of rhodium(III) chloride trihydrate $(0.132 \mathrm{~g}, 0.5 \mathrm{mmol})$ and 2-pyridyl phenone $(0.549 \mathrm{~g}, 3.0 \mathrm{mmol})$ in an oven at 423 K for 15 h . After cooling, the product was washed with methanol and orange single crystals were isolated (yield 78\%). Details of the NMR analysis are available in the archived CIF.

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{NO}\right) \mathrm{Cl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}\right)\right]$
$M_{r}=539.21$
Monoclinic, $P 2_{1} / n$
$a=13.5492(2) \AA$
$b=8.25150(10) \AA$
$c=19.2229(3) \AA$
$\beta=96.5210(10)^{\circ}$
$V=2135.24(5) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.729, T_{\text {max }}=0.918$
20293 measured reflections
$D_{x}=1.677 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 18110 reflections
$\theta=2.0-25.4^{\circ}$
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=200$ (2) K
Prism, orange
$0.45 \times 0.24 \times 0.08 \mathrm{~mm}$

3894 independent reflections
3560 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.3^{\circ}$
$h=-16 \rightarrow 16$
$k=-9 \rightarrow 9$
$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0556 P)^{2}\right. \\
& +0.8456 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.90 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-1.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0129 \text { (7) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

Rh1-Cl1	2.3246 (7)	Rh1-N2	2.028 (2)
Rh1-Cl2	2.3454 (6)	Rh1-C13	1.981 (3)
Rh1-O1	2.2831 (18)	O1-C6	1.229 (3)
Rh1-N1	2.042 (2)	O2-C19	1.217 (3)
$\mathrm{Cl} 1-\mathrm{Rh} 1-\mathrm{Cl} 2$	175.00 (2)	N2-Rh1-O1	98.96 (8)
O1-Rh1-Cl1	92.30 (5)	N2-Rh1-N1	174.74 (8)
$\mathrm{O} 1-\mathrm{Rh} 1-\mathrm{Cl} 2$	82.70 (5)	C13-Rh1-Cl1	93.29 (7)
N1-Rh1-Cl1	88.61 (6)	C13-Rh1-Cl2	91.70 (7)
$\mathrm{N} 1-\mathrm{Rh} 1-\mathrm{Cl} 2$	90.42 (6)	C13-Rh1-O1	171.09 (8)
N1-Rh1-O1	76.29 (7)	C13-Rh1-N1	96.90 (10)
N2-Rh1-Cl1	89.32 (6)	C13-Rh1-N2	88.05 (10)
$\mathrm{N} 2-\mathrm{Rh} 1-\mathrm{Cl} 2$	91.22 (6)		
Rh1-O1-C6-C5	28.0 (3)	C1-N1-C13-C14	53.9 (2)
Rh1-N1-C5-C6	-6.0 (3)	N1-C5-C6-O1	-17.4 (3)
Rh1-N2-C20-C19	8.8 (3)	C5-C6-C7-C8	-46.2 (4)
Rh1-C13-C18-C19	-13.3 (4)	C17-C18-C19-O2	-29.9 (4)
O1-Rh1-N2-C24	-28.5 (2)	O2-C19-C20-C21	30.3 (4)
N1-Rh1-C13-C14	40.3 (2)		

All H atoms bonded to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The final difference Fourier map had a large hole at about $1 \AA$ from Rh.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial support from the National Science Council of the Republic of China is acknowledged.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Geest, D. J. de \& Steel, P. J. (1995). Aust. J. Chem. 48, 1573-1585.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M.
Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

