metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mei Ching Tseng, Shao Pin Wang, Yu Cheng Yu, Shi Yuan Sheu and Wen Liang Huang*

Department of Chemistry, National Cheng-Kung University, Tainan 70101, Taiwan

Correspondence e-mail: wlhuang@mail.ncku.edu.tw

Key indicators

Single-crystal X-ray study T = 200 KMean σ (C–C) = 0.004 Å R factor = 0.030 wR factor = 0.090 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

trans-(2-Benzoylpyridine- $\kappa^2 N$,O)dichloro-[2-(pyridine-2-carbonyl)phenyl- $\kappa^2 C^1$,N]rhodium(III)

Received 19 October 2005

Accepted 26 October 2005

Online 31 October 2005

The title organometallic complex, *trans*-[Rh($C_{12}H_8NO$)-Cl₂($C_{12}H_9NO$)], which was obtained from the reaction of rhodium(III) chloride and 2-benzoylpyridine, features an Rh^{III} atom coordinated by two N, one O, one C and two Cl atoms in a distorted octahedral environment.

Comment

Several studies of the cyclometallation of *ortho*-metallated ligands such as anionic ppy (ppyH is 2-phenylpyridine) have been reported. For example, by simply mixing rhodium(III) chloride trihydrate with 2-pyridyl phenone (Hbzpy) in 2-methoxyethanol for 4 d at room temperature, de Geest & Steel (1995) synthesized Rh(Hbzpy)(bzpy)Cl₂ (bzpy is 2-pyridyl-2-phenonide). They reported that the complex had a five-membered N,O metallacycle involving the chelated Hbzpy ligand and a six-membered N,C metallacycle involving the chelated Hbzpy ligand, on the basis of NMR chemical-shift analysis. The authors claimed that they had isolated the *cis*-isomer out of the six possible diasterioisomers. We have prepared the title orthometallated Rh^{III} complex, (I), containing 2-pyridyl phenone, in order to ascertain the stereochemistry.

Complex (I) exhibits a pseudo-octahedral geometry at the Rh^{III} centre, with two Cl ligands in a *trans* orientation. The pyridyl N atom of the Hbzpy ligand is trans to the N atom of the bzpy ligand. Cyclometallation leads to a boat conformation, with atoms Rh and C19 above the N2-C20-C18-C13 plane (Fig. 1). The pyridyl ring of the Hbzpy ligand and the phenyl ring of the bzpy ligand are mutually stacked [C1- $N1-C13-C14 = 53.9(2)^{\circ}$ (Table 1). The upfield shift of H(C1)/H(C14) and the nuclear Overhauser effect of these H atoms were also observed in the NMR spectrum. On this basis, we suggest that the NMR results alone are not sufficient to determine a trans/cis conformation. The five-membered chelate ring deviates slightly from planarity [N1-C5-C6- $O1 = 17.4 (3)^{\circ}$ and is inclined to the phenyl plane [C5-C6- $C7-C8 = 46.2 (4)^{\circ}$]. There are no short intermolecular contacts.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids.

Experimental

The title complex was synthesized by heating a mixture of rhodium(III) chloride trihydrate (0.132 g, 0.5 mmol) and 2-pyridyl phenone (0.549 g, 3.0 mmol) in an oven at 423 K for 15 h. After cooling, the product was washed with methanol and orange single crystals were isolated (yield 78%). Details of the NMR analysis are available in the archived CIF.

Crystal data

$[Rh(C_{12}H_8NO)Cl_2(C_{12}H_9NO)]$	$D_x = 1.677 \text{ Mg m}^{-3}$
$M_r = 539.21$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 18110
a = 13.5492 (2) Å	reflections
b = 8.25150 (10) Å	$\theta = 2.0-25.4^{\circ}$
c = 19.2229 (3) Å	$\mu = 1.08 \text{ mm}^{-1}$
$\beta = 96.5210 \ (10)^{\circ}$	T = 200 (2) K
V = 2135.24 (5) Å ³	Prism, orange
Z = 4	$0.45 \times 0.24 \times 0.08 \text{ mm}$

Data collection

Nonius KappaCCD area-detector	3894 independent reflections
diffractometer	3560 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.3^{\circ}$
(Blessing, 1995)	$h = -16 \rightarrow 16$
$T_{\min} = 0.729, \ T_{\max} = 0.918$	$k = -9 \rightarrow 9$
20293 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0556P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.030$	+ 0.8456P]
$vR(F^2) = 0.090$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.13	$(\Delta/\sigma)_{\rm max} = 0.002$
3894 reflections	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
281 parameters	$\Delta \rho_{\rm min} = -1.18 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	(Sheldrick, 1997)
	Extinction coefficient: 0.0129 (7)

Table 1 Selected geometric parameters (Å, °).

e i	· · ·	, ,	
Rh1-Cl1	2.3246 (7)	Rh1-N2	2.028 (2)
Rh1-Cl2	2.3454 (6)	Rh1-C13	1.981 (3)
Rh1-O1	2.2831 (18)	O1-C6	1.229 (3)
Rh1-N1	2.042 (2)	O2-C19	1.217 (3)
Cl1-Rh1-Cl2	175.00 (2)	N2-Rh1-O1	98.96 (8)
O1-Rh1-Cl1	92.30 (5)	N2-Rh1-N1	174.74 (8)
O1-Rh1-Cl2	82.70 (5)	C13-Rh1-Cl1	93.29 (7)
N1-Rh1-Cl1	88.61 (6)	C13-Rh1-Cl2	91.70 (7)
N1-Rh1-Cl2	90.42 (6)	C13-Rh1-O1	171.09 (8)
N1-Rh1-O1	76.29(7)	C13-Rh1-N1	96.90 (10)
N2-Rh1-Cl1	89.32 (6)	C13-Rh1-N2	88.05 (10)
N2-Rh1-Cl2	91.22 (6)		
Rh1-O1-C6-C5	28.0 (3)	C1-N1-C13-C14	53.9 (2)
Rh1-N1-C5-C6	-6.0(3)	N1-C5-C6-O1	-17.4 (3)
Rh1-N2-C20-C19	8.8 (3)	C5-C6-C7-C8	-46.2 (4)
Rh1-C13-C18-C19	-13.3(4)	C17-C18-C19-O2	-29.9 (4)
O1-Rh1-N2-C24	-28.5(2)	O2-C19-C20-C21	30.3 (4)
N1-Rh1-C13-C14	40.3 (2)		

All H atoms bonded to C atoms were placed in calculated positions, with C-H = 0.96 Å, and treated as riding atoms, with $U_{iso}(H) =$ $1.2U_{eq}(C)$. The final difference Fourier map had a large hole at about 1 Å from Rh.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial support from the National Science Council of the Republic of China is acknowledged.

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Geest, D. J. de & Steel, P. J. (1995). Aust. J. Chem. 48, 1573-1585.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.